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Measuring spherical harmonic coefficients on a sphere
S.M. Pollaine

Lawrence Livermore National Laboratory, Livermore, California 94551-9900

The eigenfunctions of Rayleigh-Taylor modes on a spherical
capsule are the spherical harmonics Yl,m These can be measured
by measuring the surface perturbations along great circles and
fitting them to the first few modes by a procedure described in
this article.  For higher mode numbers, it is more convenient to
average the Fourier power spectra along the great circles, and
then transform them to spherical harmonic modes by an
algorithm derived here.

I. Introduction

     The Rayleigh-Taylor instability [1,2] can have a drastic impact on the
implosion of an inertial confinement fusion (ICF) capsule.  Small
perturbations on the capsule surface may grow into large perturbations
during the implosion.  This growth will degrade capsule yield if significant
mixing occurs, or if the imploding high-density shell breaks up.  Thus it is
important to accurately predict the growth of these perturbations to
determine the required smoothness for ICF capsules.
     Any computational model for predicting perturbation growth, such as the
Haan model [3], must start with the spectrum of spherical harmonic modes
that represents the initial surface perturbations.  Each mode is grown by a
factor that is determined from two-dimensional hydrodynamic simulations.
Then the growth of each mode is limited by a non-linear saturation model.
The final sum over modes gives the predicted final configuration of the
capsule surface.  Thus it’s important to measure the spectrum of spherical
harmonic modes, which is inherently two dimensional.
     There are two main ways to measure the modal spectrum.  The most
direct way (although not usually done) is to measure the surface
perturbations at many points around the sphere, and fit to a set of modes.
This fit is mathematically described in part II.  The most common way is to
measure the surface perturbations along a great circle, obtain one-
dimensional modes by a Fourier transformation, and convert these values to
the two-dimensional spherical harmonic modal spectrum.  Part III shows
how to make that transformation with isotropic perturbations, and Part IV



discusses the anisotropic case of axisymmetric perturbations.  We argue in
Part V that the most efficient way to obtain a modal spectrum is a
combination of these two ways, and show results with with numerical
experiments.  Part VI discusses the case of an isolated defect.

II.  Direct fit to surface perturbations

   Let {Ωi}, i=1,...,N, be a set of solid angles at which height {Ri} is
measured.  The set {Ωi} could be, for instance, a collection of great circle
traces on the sphere.  We want to find the spherical harmonic coefficients alm

that are the best fit to R Yi l m l m i
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     Thus we get a set of ( )maxl + 1 2  equations with ( )maxl + 1 2  unknowns, namely
the coefficients alm.  These equations are easily solved by matrix inversion,
as long as the number of points N is greater than ( )maxl + 1 2  (otherwise, the
matrix is singular).
     For randomly distributed points, and in the presence of random Gaussian
noise with an rms of σn, simulations show that the error in a typical alm

coefficient is roughly σ n

N l− −( )max 1 2
 when N-(lmax-1)2 is greater than about

10 or so.
     However, there is an issue of where the points are located.  If large areas
of the sphere have no sample points, then this algorithm will not work well.
We get best results when the points {Ωi} are scattered around the sphere
rather than being clumped together.   N points scattered randomly around the
sphere allows this algorithm to work up to mode N −1.



II a.  Great circle measurements

     It is usually most convenient to measure surface perturbations along great
circles on the sphere.  If we collect points from three mutually perpendicular
great circles, then simulations show this algorithm is only accurate up to
mode 2.   In these simulations, we constructed a set of perturbations along
the great circles by building up a set of spherical harmonics, with random
phases and pre-determined amplitudes, so that the modal spectrum was
defined in advance.  This is described in greater detail in section Va below.
We then used the technique describe above to derive a spectrum from the
constructed perturbations along the great circles.  An attempt to fit modes 1
and 2, which have 8 independent coefficients, gave the expected spectrum.
An attempt to fit modes1 through 3, which have 15 independent coefficients,
gave nonsensical results.
     More circles allow the measurements of more modes.  In what follows,
we will describe the great circles by the location of their poles.  For
example, three mutually perpendicular circles have their poles located at the
six faces of a cube.
     The eight corners of a cube describe four great circles, which allow the
measurements up to and including mode 3.
     The 12 faces of a dodecahedron define 6 great circles, which allow the
measurements up to and including mode 5.
     The 20 faces of an icosahedron define 10 great circles, which allow the
measurements up to mode 9.
     The 60 faces of a soccer ball define 30 great circles, which allow the
measurements up to and including mode 29.
     Simulations with nine great circles, defined by the intersection of a
sphere with the nine planes x=0, y=0, z=0, x=y, x=z, y=z, x=-y, y=-z and
x=-z, show that this algorithm works up to and including mode 9.
     These results are summarized in Table I below.  For each case, we also
determined the minimum number of points per great circle needed to
measure the given number of modes.  Note that the maximum mode that can
be measured is one less than the number of great circles.

Table I

# Great circles Max mode Minimum pts/circle
 3  2  4
 4  3  7
 6  5 11



 9  8 11
10  9 15
30 29 35

     We added random Gaussian noise to the simulations, in the form of an
uncorrelated error added to every point, with rms σ.  The errors in each
spectral element was σ / N , where N was the total number of points =
number of great circles times the number of points in each circle.  The
results were the same, whether the errors came from random Gaussian noise,
or from modes larger than the maximum mode being fit.

III.  Converting 1-D spectra into 2-D spectra

      For high mode numbers, the number of points on the sphere needed to
specify the spectrum grows quadratically with maximum mode number.  For
mode numbers greater than about 10, it is more convenient to measure the
surface perturbations along a great circle, take the Fourier transform to get
the 1-D power spectrum, and convert the 1-D spectrum into the 2-D power
spectrum defined by the spherical harmonics.  The algorithm to make this
conversion [4] is derived below, assuming that the surface perturbations are
isotropic.  We will also show the conversion for the anisotropic case when
the perturbations are axially symmetric.

     In this derivation, we derive expressions for both P1d and P2d, the 1-D and
2-D power spectra.  Then we derive the relationship between them, so that
the P2d needed for computer models can be derived from the measured P1d.

III a:  Two-Dimensional Power Spectrum

     The initial surface spectrum is described by a surface-height function
f(Ω), which is expressed as a sum of spherical harmonics:

f R Yl m l m( ) ( ), ,Ω Ω=∑   , (1)

where l runs from 0 to ∞ and m runs from –l to l.  The coefficients Rl,m are
given by

R f Y dl m l m, ,
*( ) ( )= ∫ Ω Ω Ω (2)



     For convenience, f will be defined relative to the average surface height,
so that <f(Ω)> = 0 and thus R0,0 = 0.  By picking the center of the sphere, we
can also set R1,m = 0, and start with l=2.  For greater generality, we will start
our sums with mode l=1, and the first term may or may not be zero.  The
total variance, in units of cm2, is given by combining (1) and (2) to get
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     In what follows, we will assume that the perturbations are isotropic.  This
means that Rl m,  is independent of m, where <> is used to denote an

ensemble average over many similarly constructed capsules.  We define the
two-dimensional power spectrum P2D(l) as the contribution of each mode l to
the total variance.  Since there are 2l+1 values of m for each l, P2D(l) is given
by

P l
l
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and the total variance is given by P lD
l

2
1

( )
=
∑  .   The l=1 contribution again can

be eliminated by choosing the center of the sphere.  It is this power spectrum
that is required in a computer simulation of instability growth.

III b:  One-Dimensional Power Spectrum

In practice, the surface height on a capsule is usually measured along a one-
dimensional path, typically a great circle, and the power spectrum is taken to
be the square of the absolute value of the Fourier transform of the height
variation along the path.  Let the height along a co-latitude θ0 be given by
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where we will usually pick the great circle θ0 = π/2 and
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     As in the two-dimensional case, we have taken g(φ) to be measured
relative to the average surface height so that a0 = 0,  and we could choose to
define the center of the sphere so that a1 = a-1 = 0 as well.  The variance of g
is given by
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     As in the two-dimensional case, we define P1D as the contribution of each
mode number n to the variance.  From (7), this definition means
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III c:  Comparison of P2D with P1D

     It is important to note that P1D and P2d are different, even though both
represent the contribution to the total variance of surface perturbations per
mode number l.  This difference comes about because the two-dimensional
modes do not correspond to the one-dimensional modes.  We now derive the
relationship between P1D and P2d, assuming that the surface perturbations are
isotropic.  This will allow us to connect the experimentally measured spectra
with those needed for numerical simulations.
     In order to relate the two spectra, we first need to re-express the one-
dimensional coefficients an in terms of the coefficients Rl,m of the two-
dimensional representation of the surface variation.  For a given angle θ0,
we can substitute the expansion of f(Ω) [Eq. (1)] into our definition of g(θ)
[Eq. (5)] and an [Eq. (6)] to yield
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Further, the spherical harmonics are related to the associated Legendre
polynomials Pl,m by
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     Combining Eqs. (9) and (10) and integrating over φ gives
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     Now we combine Eqs. (4), (8) and (11), and the assumption of isotropy,
which allows us to make the l l’ terms disappear when we take the ensemble
average:
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     For the usual case of a great circle trace, θ0 = π/2 and
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Substituting Eq. (13) into (12) gives the desired relationship between P1D and
P2d :
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or, in another form,
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     In evaluating the double factorials for negative values, we use (-3)!! = -1
and (-2)!! = (-1)!! = 0!! = 1.  The first few terms of Eq. (14) are
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     These expressions are exact, but cumbersome, and are useful for
numerical calculations.  Alternative integral representations are useful for
mode numbers above 10 or so.   By using Stirling’s approximation for
factorials and double factorials, good for large values of x,
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equations (14) and (16) become the integral equations
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     Another form for Eq. (20) is obtained by multiplying (19) by n n k/ 2 2−
and integrating from k to ∞.  Interchanging the order of integration on the
right hand side, using

n dn
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and differentiating both sides gives an additional integral form:
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 With a change of variables, we obtain a third, and perhaps the most useful,
form as well:
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     All of these integral representations are good for large n and l, and break
down for n and l below 5 or 10, where the discreteness of the modes
becomes very important.

IV.  Anisotropic perturbations

     It is interesting to compare these results to the maximally anisotropic case
of a sphere with azimuthally symmetric perturbations.  This would
approximate the case of a sphere turned on a lathe, where the variations
would be mostly in the θ direction and not in the φ direction.  In this case,



the perturbations are described by f(θ) along any line of longitude, with θ
varying from 0 to π.  We then have the choice of expanding f(θ) in a Fourier
series with cos(nθ) terms only, or in spherical harmonics, with m = 0 terms
only.  In that case, it becomes more convenient to use Legendre
polynomials, which are related to the spherical harmonics by Eq. (10) with
m = 0.  Thus we have
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     The desired power spectrum can be obtained from (25) and (26) in two
ways.   (1) Obtain bl directly, calculating the Legendre polynomials by using
the recursion relation P0(x) = 1, P1(x)= x, and  nPn(x) – (2n-1)xPn-1(x) +
(n-1)Pn-2(x) = 0.   (2) Obtain the set an from a Fourier transform, then convert
to bl by using

cos( ) cos( ) , cos( ) cos( ) cos

cos( ) cos( ), cos( ) cos( )ln ln

n U P n l U
l

n P d

P V n n l V n P d

nl l
l

n

nl l

l
n

l

l

θ θ θ θ θ

θ θ
π

θ θ θ
π

= ( ) − =
+ ( )

( ) = − = ( )

=
−

=

∑ ∫

∑ ∫

0
1

1

0
0

2 1
2

2

even,

even,

(27)



The coefficients Unl and Vln are given by the expressions in Eqs. (14) and
(15)!  It follows that
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where again Unl and Vln are given by the expressions in Eqs. (14) and (15).

V.  Combining two ways of measuring perturbations

     The two ways of measure surface perturbations is the direct way,
described in part II, and the usual way that converts the Fourier transforms
of great circles to the two-dimensional power spectrum, described in part III.

     Typically, measurements are made along various great circles.  A great
circle trace will measure thousands of points, but these are not uniformly
distributed over the sphere.  One great circle can not even measure mode 1
relative to a fixed center.  Three mutually perpendicular great circles can
measure modes 1 and 2, but not mode 3.  N great circles allow the
measurements of up to mode N-1, provided that these circles are “reasonably
distributed” around the sphere.  Thus, the direct way described in part II can
only be done up to mode 2 for the usual three mutually perpendicular great
circles, and up to mode 8 for the nine great circles inscribed in the planes
x=0, y=0, z=0, x=y, x=-y, x=z, x=-z, y=z and y=-z.

     In Part III, we used the assumption of isotropy in two ways:
R R Rl n l n l n l l, ,

*
, ,′ ′=

2
δ  and Rl m,  is independent of m.  Both of these define

ensemble averages.  Any particular member of the ensemble will violate
these relationships to some degree.  These violations matter more for low
mode numbers for two reasons: (1) the lowest modes tend to have the
biggest amplitudes, and (2) for high mode numbers, there are so many m
values that it is more convenient to deal with them statistically.  Thus, the
relationship between 1-D and 2-D perturbations for a particular capsule is
most applicable for the higher modes.  Numerical experiments, described
below, show that the fitting algorithm in section II is much more accurate in
measuring the lower modes than   Thus we recommend that the first eight
modes be absolutely determined by the fitting procedure described in part II,
with the nine great circles.  Modes 9 and higher are most conveniently



estimated by averaging together the Fourier spectra of the nine great circles,
then using the formalism of Part III to derive a spherical harmonic modal
spectrum that is appropriate for a Rayleigh-Taylor model.

V a.  Numerical experiments

     A typical spectrum of an ICF capsule [5] is shown in Fig. 1.  Most of the
variance is in the first few modes. We picked the set of 9 great circles
defined by the intersection of a sphere with the nine planes x=0, y=0, z=0,
x=y, x=z, y=z, x=-y, y=-z and x=-z, with 1024 points in each circle, for a
total of 9216 points.  Using the spectrum of Fig. 1, we calculated the surface
height at each of these 9216 points for the first 100 modes.  For each mode
n, the 2n+1 spherical harmonics belonging to that mode were given
randomly chosen coefficients with a probability proportional to (1-x2)n-1,
with –1 < x < 1, and renormalized so that the sum of the squares of the
coefficients equaled the spectrum’s value at that mode.  Thus the total
variance was equal to the sum of the spectral values up to mode 100.  We
added a random gaussian noise with rms σ to each of the 9216 points
independently, with σ2 being the variance due to all modes greater than 100.
     Next, we analyzed the resulting surface perturbations in the two ways
described above.  We fitted the first 8 modes, with 81 independent
coefficients, using the matrix inversion described in part II above.  We also
chose the three great circles defined by the planes x=0, y=0 and z=0 and
calculated Fourier spectra for each.  The 1-D power spectrum was then taken
to be the average of the three power spectra.  P2D was then calculated using
Eq. (16).   We also computed P2D using the nine great circles described
above.
     Fig. 2 shows the deviation of the computed spectra from the original
spectra.  The lower curve in red is the result of fitting the first eight modes to
the perturbations on the nine great circles.  The middle green curve is the
computed P2D from averaging the spectra of nine great circles, and the upper
blue curve is the computed P2D  from averaging three great circles, the
current way of computing power spectra.  The optimal strategy would be to
use the nine great circles to compute the first eight modes by the fitting
technique (red curve), and compute P2D from averaging the spectra of the
nine great circles.



VI Detection of isolated defects

     Suppose there is an isolated defect on a surface of radius r.  If we assume
for simplicity that this defect is azimuthally symmetric with a shape f(θ),
then we can calculate the spectrum using Eqs. (24), (25) and (26).  A great
approximation, good for l > 0 and θ < π/2, is P J ll ( ) ( )θ θ≈ +( )0

1
2 .  With this

approximation, we have P l
l
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+( )[ ]∫ θ θ θ θ  .   N of these

bumps randomly scattered around the sphere then contribute N times this
amount to the variance.  For the case of N parabolic bumps of diameter d

and height h, we have P l
N h J l d r

lD2

2
2
2

3

16 2 1 4
2 1

( )
( ) /

( )
=

+( )
+

, with the largest

contributions to modes between l = 0.5r/d and 3r/d.  Typically, for an ICF
capsule with r = 1 mm, the worst case bump has d = 100 µm, for l ~ 5-30
[6].  A great circle will encounter this bump if the center of the bump is
within d/2 of the circle.  The probability of this happening is about d/2r, or
5% for our example.  N great circles will have a probability of encountering
the bump of about Nd/2r – α(Nd/r)2, where α is a number of order one that
depends on how the great circles intersect.  For the nine great circles
described above, α = 0.12 and the probability of encountering the bump is
40%.

      Fig. 3 shows a typical great circle trace on a 2 mm diameter capsule with
50 bumps randomly scattered on the surface, each bump being circular, with
a diameter of 100 µm and a height of 10 µm.  Fig. 4 shows the analytic
estimate of the power spectrum, using the equation above, and compares that
estimate to two attempts to measure the spectrum with nine great circles.
The two red curves are the fits to the first eight modes, and the blue and
green spectra are the 2-D spectra that result from transforming the average
of the nine power spectra.

Conclusions

     The characterization of ICF capsules can be improved by using at least
nine great circles to gather surface height data.  The first eight modes would
be calculated by a least square fit described in section II.  Modes nine and
larger would be calculated by averaging the nine power spectra obtained
from the nine great circles, then using the formulas in section IIIc to
compute the two-dimensional power spectrum.
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